Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/10638
Title: Resolution of the ideal sheaf of a generic union of conics in P3:I
Authors: Rahavandrainy, Olivier
Keywords: Projective spaceschemesheafminimal free resolution
Issue Date: 23-Dec-2014
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
46 (2014)
Abstract: 
We work over an algebraically closed field K of characteristic
zero. Let Y be the generic union of $r \geq 2$ skew conics in
$P^3_K$, $I_Y$ its ideal sheaf and v the least integer
such that $h^0(I_Y(v)) > 0$. We first establish a conjecture (concerning a maximal rank problem) which allows to compute, by a standard method, the minimal free resolution of $I_Y$ if $r\geq 5$ and
$\displaystyle{\frac{v(v+2)(v+3)}{12v+2}\frac{(v+1)(v+2)(v+3)}{12v+6}}$. At the second time, we give the first part of the proof of that conjecture.
Description: 
Olivier Rahavandrainy, "Resolution of the ideal sheaf of a generic union of conics in P3:I", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.203-229
Type: Article
URI: http://hdl.handle.net/10077/10638
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014)

Files in This Item:
File Description SizeFormat
RIMUT_46_Rahavandrainy.pdf458 kBAdobe PDFThumbnail
View/Open
Show full item record

This item is licensed under a Creative Commons License Creative Commons



CORE Recommender

Page view(s) 50

543
checked on Apr 1, 2020

Download(s) 50

319
checked on Apr 1, 2020

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons