Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/10638
Title: | Resolution of the ideal sheaf of a generic union of conics in P3:I | Authors: | Rahavandrainy, Olivier | Keywords: | Projective space; scheme; sheaf; minimal free resolution | Issue Date: | 23-Dec-2014 | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 46 (2014) |
Abstract: | We work over an algebraically closed field K of characteristic zero. Let Y be the generic union of $r \geq 2$ skew conics in $P^3_K$, $I_Y$ its ideal sheaf and v the least integer such that $h^0(I_Y(v)) > 0$. We first establish a conjecture (concerning a maximal rank problem) which allows to compute, by a standard method, the minimal free resolution of $I_Y$ if $r\geq 5$ and $\displaystyle{\frac{v(v+2)(v+3)}{12v+2} |
Description: | Olivier Rahavandrainy, "Resolution of the ideal sheaf of a generic union of conics in P3:I", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.203-229 |
Type: | Article | URI: | http://hdl.handle.net/10077/10638 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RIMUT_46_Rahavandrainy.pdf | 458 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
640
checked on Feb 4, 2023
Download(s) 50
398
checked on Feb 4, 2023
Google ScholarTM
Check
This item is licensed under a Creative Commons License