Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/10638
DC FieldValueLanguage
dc.contributor.authorRahavandrainy, Olivier-
dc.date.accessioned2014-12-23T14:36:50Z-
dc.date.available2014-12-23T14:36:50Z-
dc.date.issued2014-12-23-
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/10638-
dc.descriptionOlivier Rahavandrainy, "Resolution of the ideal sheaf of a generic union of conics in P3:I", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.203-229it_IT
dc.description.abstractWe work over an algebraically closed field K of characteristic zero. Let Y be the generic union of $r \geq 2$ skew conics in $P^3_K$, $I_Y$ its ideal sheaf and v the least integer such that $h^0(I_Y(v)) > 0$. We first establish a conjecture (concerning a maximal rank problem) which allows to compute, by a standard method, the minimal free resolution of $I_Y$ if $r\geq 5$ and $\displaystyle{\frac{v(v+2)(v+3)}{12v+2}<r < \frac{(v+1)(v+2)(v+3)}{12v+6}}$. At the second time, we give the first part of the proof of that conjecture.it_IT
dc.language.isoenit_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries46 (2014)it_IT
dc.subjectProjective spaceit_IT
dc.subjectschemeit_IT
dc.subjectsheafit_IT
dc.subjectminimal free resolutionit_IT
dc.titleResolution of the ideal sheaf of a generic union of conics in P3:Iit_IT
dc.typeArticle-
dc.subject.msc201014N05-
dc.subject.msc201014F05-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014)
Files in This Item:
File Description SizeFormat
RIMUT_46_Rahavandrainy.pdf458 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

643
checked on Apr 1, 2023

Download(s) 50

398
checked on Apr 1, 2023

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons