Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/10639
Title: | On an inequality from Information Theory | Authors: | Horst, Alzer | Keywords: | Gibbs'inequality; Kullback-Leibler divergence; information theory; log-function | Issue Date: | 23-Dec-2014 | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 46 (2014) |
Abstract: | We prove that the inequalities $$ \sum_{j=1}^n \frac{q_j (q_j-p_j)^2}{q_j^2 +m_j^{\alpha} M_j^{1-\alpha}} \leq \sum_{j=1}^n p_j \log \frac{p_j}{q_j} \leq \sum_{j=1}^n \frac{q_j (q_j-p_j)^2}{q_j^2 +m_j^{\beta} M_j^{1-\beta}} \quad{(\alpha, \beta \in \mathbb{R})}, $$ where $$ m_j=\min(p_j^2, q_j^2) \quad\mbox{and} \quad{M_j=\max(p_j^2, q_j^2)} \quad(j=1,...,n), $$ hold for all positive real numbers $p_j, q_j$ $(j=1,...,n; n\geq 2)$ with $\sum_{j=1}^n p_j=\sum_{j=1}^n q_j$ if and only if $\alpha\leq 1/3$ and $\beta\geq 2/3$. This refines a result of Halliwell and Mercer, who showed that the inequalities are valid with $\alpha=0$ and $\beta=1$. |
Description: | Horst Alzer, "On an inequality from Information Theory", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 46 (2014), pp.231-235 |
Type: | Article | URI: | http://hdl.handle.net/10077/10639 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.46 (2014) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RIMUT_46_Alzer.pdf | 217.13 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
585
checked on Feb 6, 2023
Download(s) 50
403
checked on Feb 6, 2023
Google ScholarTM
Check
This item is licensed under a Creative Commons License