Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11218
Title: Expressing Forms as a Sum of Pfaffians
Authors: Chiantini, Luca
Issue Date: 2015
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
47 (2015)
Abstract: Let A = (aij) be a symmetric non-negative integer 2k X 2k matrix. A is homogeneous if aij + ail = an + akj for any choice of the four indexes. Let A be a homogeneous matrix and let F be a general form in C[xi,....xn] with 2deg(F) = trace(A). We look for the least integer s(A), so that F = pfaff(M1) + ••• + pfaff(Ms(A)) where the Mi = (Fim) are 2k X 2k skew-symmetric matrices of forms with degree matrix A. We consider this problem for n = 4 and we prove that s (A)_< k for all A.
URI: http://hdl.handle.net/10077/11218
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/0049-4704/11218
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.47 (2015)

Files in This Item:
File Description SizeFormat 
RIMUT_47_05_Chiantini.pdfFull Text Article270.42 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

348
checked on Oct 21, 2018

Download(s)

151
checked on Oct 21, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons