Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11218
Title: Expressing Forms as a Sum of Pfaffians
Authors: Chiantini, Luca
Issue Date: 2015
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
47 (2015)
Abstract: 
Let A = (aij) be a symmetric non-negative integer 2k X 2k
matrix. A is homogeneous if aij + ail = an + akj for any choice of the
four indexes. Let A be a homogeneous matrix and let F be a general
form in C[xi,....xn] with 2deg(F) = trace(A). We look for the least
integer s(A), so that F = pfaff(M1) + ••• + pfaff(Ms(A)) where the
Mi = (Fim) are 2k X 2k skew-symmetric matrices of forms with degree
matrix A. We consider this problem for n = 4 and we prove that
s (A)_< k for all A.
Type: Article
URI: http://hdl.handle.net/10077/11218
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/0049-4704/11218
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.47 (2015)

Files in This Item:
File Description SizeFormat
RIMUT_47_05_Chiantini.pdfFull Text Article270.42 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

451
checked on Oct 16, 2019

Download(s)

205
checked on Oct 16, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons