Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11221
Title: Simultaneously self-adjoint sets of 3 X 3 matrices
Authors: Buckley, Anita
Tomaž, Košir
Keywords: Simultaneously self-adjoint sets of matrices, matrix definiteness, determinantal representation, linear matrix inequalities.
Issue Date: 2015
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
47 (2015)
Abstract: For a generic set M of 3x3 matrices over C we find necessary and sufficient conditions when A4 is simultaneously self-adjoint. Moreover, for a set of complex hermitian matrices we can tell if there exists a linear combination of matrices which is positive definite. Every M can be identified with a determinantal representation of a cubic hypersurface. This allows us to use the tools of algebraic geometry. The question of definiteness can be solved by using semidefinite programming.
URI: http://hdl.handle.net/10077/11221
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/0049-4704/11221
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.47 (2015)

Files in This Item:
File Description SizeFormat 
RIMUT_47_08_Buckley Kosir_2.pdfFull text article895.98 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

350
checked on Oct 18, 2018

Download(s)

205
checked on Oct 18, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons