Please use this identifier to cite or link to this item:
Title: On the lifting problem in positive characteristic
Authors: Bonacini, Paola
Keywords: lifting problem, sporadic zero, surface
Issue Date: 2015
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
47 (2015)
Given P nk with k algebraically closed field of characteristic p > 0, and X C Pnk integral variety of codimension 2 and degree d,
let Y = X n H be the general hyperplane section of X. In this paper
we study the problem of lifting, i.e. extending, a hypersurface in H of
degree s containing Y to a hypersurface of same degree s in Pn containing X. For n = 3 and n = 4, in the case in which this extension
does not exist we get upper bounds for d depending on s and p.
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/0049-4704/11224
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.47 (2015)

Files in This Item:
File Description SizeFormat
RIMUT_47_11_Bonacini.pdfFull text article326.03 kBAdobe PDFThumbnail
Show full item record

CORE Recommender

Page view(s)

Last Week
Last month
checked on Aug 5, 2019


checked on Aug 5, 2019

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons