Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11224
Title: On the lifting problem in positive characteristic
Authors: Bonacini, Paola
Keywords: lifting problem, sporadic zero, surface
Issue Date: 2015
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
47 (2015)
Abstract: Given P nk with k algebraically closed field of characteristic p > 0, and X C Pnk integral variety of codimension 2 and degree d, let Y = X n H be the general hyperplane section of X. In this paper we study the problem of lifting, i.e. extending, a hypersurface in H of degree s containing Y to a hypersurface of same degree s in Pn containing X. For n = 3 and n = 4, in the case in which this extension does not exist we get upper bounds for d depending on s and p.
URI: http://hdl.handle.net/10077/11224
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/0049-4704/11224
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.47 (2015)

Files in This Item:
File Description SizeFormat 
RIMUT_47_11_Bonacini.pdfFull text article326.03 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

369
Last Week
0
Last month
0
checked on Oct 18, 2018

Download(s)

226
checked on Oct 18, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons