Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11425
Title: THREE-DIMENSIONAL VISION FOR STRUCTURE AND MOTION ESTIMATION
Authors: FUSIELLO, ANDREA
Issue Date: 12-Feb-1999
Publisher: Università degli studi di Trieste
Abstract: Questa tesi, intitolata Visione Tridimensionale per la stima di Struttura e Moto, tratta di tecniche di Visione Artificiale per la stima delle proprietà geometriche del mondo tridimensionale a partire da immagini numeriche. Queste proprietà sono essenziali per il riconoscimento e la classificazione di oggetti, la navigazione di veicoli mobili autonomi, il reverse engineering e la sintesi di ambienti virtuali. In particolare, saranno descritti i moduli coinvolti nel calcolo della struttura della scena a partire dalle immagini, e verranno presentati contributi originali nei seguenti campi. Rettificazione di immagini steroscopiche. Viene presentato un nuovo algoritmo per la rettificazione, il quale trasforma una coppia di immagini stereoscopiche in maniera che punti corrispondenti giacciano su linee orizzontali con lo stesso indice. Prove sperimentali dimostrano il corretto comportamento del metodo, come pure la trascurabile perdita di accuratezza nella ricostruzione tridimensionale quando questa sia ottenuta direttamente dalle immagini rettificate. Calcolo delle corrispondenze in immagini stereoscopiche. Viene analizzato il problema della stereovisione e viene presentato un un nuovo ed efficiente algoritmo per l'identificazione di coppie di punti corrispondenti, capace di calcolare in modo robusto la disparità stereoscopica anche in presenza di occlusioni. L'algoritmo, chiamato SMW, usa uno schema multi-finestra adattativo assieme al controllo di coerenza destra-sinistra per calcolare la disparità e l'incertezza associata. Gli esperimenti condotti con immagini sintetiche e reali mostrano che SMW sortisce un miglioramento in accuratezza ed efficienza rispetto a metodi simili Inseguimento di punti salienti. L'inseguitore di punti salienti di Shi-Tomasi- Kanade viene migliorato introducendo uno schema automatico per lo scarto di punti spuri basato sulla diagnostica robusta dei campioni periferici ( outliers ). Gli esperimenti con immagini sintetiche e reali confermano il miglioramento rispetto al metodo originale, sia qualitativamente che quantitativamente. Ricostruzione non calibrata. Viene presentata una rassegna ragionata dei metodi per la ricostruzione di un modello tridimensionale della scena, a partire da una telecamera che si muove liberamente e di cui non sono noti i parametri interni. Il contributo consiste nel fornire una visione critica e unificata delle più recenti tecniche. Una tale rassegna non esiste ancora in letterarura. Moto tridimensionale. Viene proposto un algoritmo robusto per registrate e calcolare le corrispondenze in due insiemi di punti tridimensionali nei quali vi sia un numero significativo di elementi mancanti. Il metodo, chiamato RICP, sfrutta la stima robusta con la Minima Mediana dei Quadrati per eliminare l'effetto dei campioni periferici. Il confronto sperimentale con una tecnica simile, ICP, mostra la superiore robustezza e affidabilità di RICP.
This thesis addresses computer vision techniques estimating geometrie properties of the 3-D world /rom digital images. Such properties are essential for object recognition and classification, mobile robots navigation, reverse engineering and synthesis of virtual environments. In particular, this thesis describes the modules involved in the computation of the structure of a scene given some images, and offers original contributions in the following fields. Stereo pairs rectification. A novel rectification algorithm is presented, which transform a stereo pair in such a way that corresponding points in the two images lie on horizontal lines with the same index. Experimental tests prove the correct behavior of the method, as well as the negligible decrease oLthe accuracy of 3-D reconstruction if performed from the rectified images directly. Stereo matching. The problem of computational stereopsis is analyzed, and a new, efficient stereo matching algorithm addressing robust disparity estimation in the presence of occlusions is presented. The algorithm, called SMW, is an adaptive, multi-window scheme using left-right consistency to compute disparity and its associated uncertainty. Experiments with both synthetic and real stereo pairs show how SMW improves on closely related techniques for both accuracy and efficiency. Features tracking. The Shi-Tomasi-Kanade feature tracker is improved by introducing an automatic scheme for rejecting spurious features, based on robust outlier diagnostics. Experiments with real and synthetic images confirm the improvement over the original tracker, both qualitatively and quantitatively. 111 Uncalibrated vision. A review on techniques for computing a three-dimensional model of a scene from a single moving camera, with unconstrained motion and unknown parameters is presented. The contribution is to give a critical, unified view of some of the most promising techniques. Such review does not yet exist in the literature. 3-D motion. A robust algorithm for registering and finding correspondences in two sets of 3-D points with significant percentages of missing data is proposed. The method, called RICP, exploits LMedS robust estimation to withstand the effect of outliers. Experimental comparison with a closely related technique, ICP, shows RICP's superior robustness and reliability.
Description: 1997/1998
URI: http://thesis2.sba.units.it/store/handle/item/12451
http://hdl.handle.net/10077/11425
Appears in Collections:PREGRESSO

Files in This Item:
File Description SizeFormat 
20276.pdf3.26 MBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

259
checked on Feb 21, 2018

Download(s)

335
checked on Feb 21, 2018

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons