Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/11580
Title: PARTICLE PRODUCTION IN A STRONG, SLOWLY-VARYING MAGNETIC FIELD WITH AN APPLICATION TO ASTROPHYSICS
Authors: DI PIAZZA, ANTONINO
Issue Date: 5-Apr-2004
Publisher: Università degli studi di Trieste
Abstract: 
In questo lavoro ho affrontato lo studio della produzione dal vuoto di particelle (elettroni, posi troni e fotoni) in presenza di campi magnetici intensi e lentamente variabili nel tempo. Per "campi magnetici intensi" intendo campi magnetici la cui intensità è molto maggiore del valore Ber = m2c3 /(ne) = 4.4 x 1013 gauss che corrisponde al valore minimo dell'ampiezza che un campo magnetico deve avere affinché risulti energeticamente possibile la creazione dal vuoto di una coppia e- - e+. Tali campi magnetici non possono essere prodotti in laboratorio, tuttavia, come mostrano certe evidenze indirette e simulazioni numeriche, essi possono essere presenti attorno a certi oggetti astrofisici compatti (stelle di neutroni estremamente magnetizzate dette magnetar o buchi neri massicci). Per questo motivo, nel presente lavoro ho assunto che le sorgenti dei campi magnetici in gioco sono sempre oggetti astrofisici compatti del tipo appena descritto. In particolare, ho tentato di applicare i miei risultati ai cosiddetti Gamma-Ray Bursts (GRB) e ai loro spettri energetici. I G RB sono impulsi molto intensi di raggi gamma soft che sono rivelati in media una volta al giorno dai nostri satelliti e che, si pensa, sono originati proprio attorno a sorgenti astrofisiche come buchi neri massicci o, secondo alcuni modelli, magnetar. Il mio punto di vista è quello di un fisico teorico e non di un astrofisico e, pertanto, i modelli che utilizzo sono versioni molto semplificate della realtà. Tuttavia, alcuni degli spettri di fotoni che ho calcolato mostrano somiglianze qualitative con i corrispondenti spettri energetici sperimentali dei GRB. Da un punto di vista dei risultati, la tesi può essere divisa in tre parti distinte: la prima riguarda la produzione di coppie e- -e+ in presenza di un campo magnetico intenso e lentamente variabile in varie configurazioni, la seconda riguarda la produzione di fotoni in presenza di un campo magnetico intenso e lentamente rotante e, infine, la terza riguarda gli effetti che il campo gravitazionale dell'oggetto astrofisico compatto induce sulla produzione di coppie e- - e+. Nella prima parte ho calcolato la probabilità per unità di volume che una coppia e- - e+ venga creata dal vuoto in presenza di un campo magnetico intenso e lentamente variabile per mezzo della teoria delle perturbazioni adiabatiche al primo ordine. Inizialmente, ho mostrato analiticamente che se il campo magnetico cambia direzione allora vengono innescati meccanismi di produzione molto più efficienti rispetto a quelli innescati in presenza di un campo magnetico variabile solo in modulo. Il motivo fisico di questo fatto va ricercato nell'esistenza di stati di singola particella elettronici e positronici la cui energia non dipende dal campo magnetico. Infatti, questi stati, detti transverse ground states (TGS), hanno, in presenza di un campo magnetico intenso, un'energia molto più bassa di quella degli altri stati e solo se il campo magnetico varia in direzione è possibile creare una coppia in cui sia l'elettrone che il positrone sono in un TGS. Un'altra conclusione di questa prima parte riguarda il ruolo che il campo elettrico indotto dalla variazione nel tempo del campo magnetico gioca nel fenomeno della produzione. Infatti, si vede che la creazione della coppia è possibile (ovviamente) solo se tale campo elettrico è presente e, in particolare, che la probabilità di creazione per unità di volume è proporzionale al quadrato del campo elettrico stesso. A vendo in mente una possibile applicazione dei calcoli agli spettri dei GRB, nella seconda parte della tesi ho calcolato lo spettro dei fotoni emessi da elettroni e positroni presenti in un campo magnetico intenso e puramente rotante in seguito alla loro annichilazione o come radiazione di sincrotrone. In entrambi i casi lo spettro finale è stato calcolato numericamente. Mentre lo spettro di annichilazione presenta un picco pronunciato in corrispondenza della massa dell'elettrone, lo spettro di sincrotrone mostra due andamenti differenti attorno ad un valore di energia rv 1-3 Me V. In generale, la forma dello spettro di sincrotrone somiglia qualitativamente a quella di alcuni spettri di G RB mentre lo spettro di annichilazione è decisamente diverso. In particolare, è risultato che analogamente agli spettri sperimentali l'andamento dello spettro di sincrotrone per piccole energie è inversamente proporzionale all'energia del fotone. Infine, ho anche calcolato analiticamente lo spettro dei fotoni emessi direttamente dal vuoto in seguito all'interazione non lineare del vuoto stesso col campo magnetico rotante ma i risultati mostrano che il nun1ero di fotoni così prodotti è decisamente inferiore a quello dei fotoni prodotti attraverso gli altri due meccanismi e la loro presenza può essere trascurata. Come ho detto all'inizio, i campi magnetici che considero sono prodotti da stelle di neutroni o da buchi neri. Per questo, può risultare importante tenere in considerazione anche la presenza del campo gravitazionale prodotto dall'oggetto compatto. Ho fatto questo nell'ultima parte della tesi in cui ho visto come le energie e gli stati elettronici e positronici di singola particella e, di conseguenza, le probabilità di produzione di una coppia vengono modificate dalla presenza di un campo gravitazionale debole trattato perturbativamente o dalla presenza di uno intenso trattato non perturbativamente. Nel primo caso, il risultato più interessante è che in presenza di un campo gravitazionale (seppur debole) perpendicolare al campo magnetico è possibile creare coppie con l 'elettrone e il positrone in un TGS anche se il campo magnetico varia solo in modulo. Invece, il trattamento del caso non perturbativo è risultato completamente diverso per il fatto che i livelli energetici dell'elettrone e del positrone, a differenza che nello spaziotempo di Minkowski, sono individuati da un numero quantico continuo e indipendente dagli altri numeri quantici e dal campo magnetico. In questo caso, ho mostrato come gli effetti del campo gravitazionale sulla probabilità di creazione sono effettivamente molto importanti, tanto da non poter essere trascurati. In particolare, elettroni e positroni con energie molto alte vengono creati in numero maggiore in presenza di un campo gravitazionale intenso che nello spaziotempo di Minkowski.

In this work I have studied the production from vacuum of electrons, positrons and photons in the presence of strong and slowly-varying magnetic fields. "Strong magnetic fields" here means magnetic fields whose intensity is much larger than Ber = m2c3 / (he) = 4.4 x 1013 gauss corresponding t o the minimum strength of a magnetic field whose energy is enough to create an e- - e+ pair from vacuum. Such intense magnetic fields cannot be created in terrestrial laboratories but, as some indirect evidences and numerical simulations show, they may be present around some astrophysical compact objects (strongly magnetized neutron stars called magnetar or massive black ho l es). For this reason, in the present work I h ave assumed t ha t the sources of the magnetic fields are always such kind of astrophysical compact objects. In particular, I have tried t o apply my results to the so-called Gamma-Ray Bursts ( G RB) an d their energy spectra. G RB are very intense soft gamma-ray pulses that our satellites register on average once a day and that are thought to be originated around astrophysical objects like massive black ho l es or, following some models, magnetars. My point of view is no t astrophysical but theoretical then the models I have used are very simplified versions of the real situation. Nevertheless, some of the photon spectra I have calculated are qualitatively similar to the corresponding experimental G RBs energy spectra. The results of the thesis can be divided into three different parts: the first one concerns the production of e- - e+ pairs in the presence of a strong, slowly-varying magnetic field in various configurations, the second one concerns the production of photons in the presence of a strong and slowly-rotating magnetic field and, finally, the third one concerns how the presence of the gravitational field of the astrophysical compact object affects the production of e- -e+ pairs. In the first part I have calculated the probability per unit volume that an e- - e+ pair is created from vacuum in the presence of a strong, slowly varying magnetic field through the first-order adiabatic perturbation theory. Firstly, I have shown analytically that if the direction of the magnetic field changes with time then production mechanisms are primed that are much more efficient than those primed in the presence of a magnetic field changing only in strength. The physical reason of this fact is the existence of one particle electron and positron states whose energy does not depend on the magnetic field. In fact, these states, called transverse ground states (TGS), have, in the presence of a strong magnetic field, an energy much lower than that of the other states and only if the magnetic field changes in direction it is possible to create a pair in which both the electron and the positron are in a TGS. Another conclusion in this first part concerns the role that the electric field induced by the time variation of the magnetic field plays in the production mechanism. In fact, one sees that the pair creation is possible ( obviously) only if such an electric field is present an d, in particular, t ha t the probability per unit volume is proportional to the square of the electric field itself. Having in mind a possible application of the calculations to G RBs spectra, in the second part of the thesis I have calculated the spectrum of the photons emitted by electrons and positrons in the magnetic field as a consequence of their annihilation or as synchrotron radiation. In both cases the final spectrum has been calculated numerically. While the annihilation spectrum shows a well marked peak around the electron mass, the synchrotron spectrum shows two different behaviours around an energy value rv 1-3 Me V. In general, the form of the synchrotron spectrum is qualitatively similar to some GRBs spectra while the annihilation spectrum is completely different. In particular, analogously to the experimental spectra the low-energy behaviour of the synchrotron spectrum is proportional to the inverse of the photon energy. Finally, I have also calculated the spectrum of the photons emitted directly from vacuum as a consequence of the nonlinear interaction of the vacuum itself with the rotating magnetic field but the results show that the number of photons produced through this mechanism is definitely lower than that of the photons produced through the other mechanisms and their presence can be neglected. As I have said at the beginning, the magnetic fields considered are produced by neutron stars or black holes. For this reason, taking into account the gravitational field produced by the compact object may give relevant results. I have clone this in the last part of the thesis where I have shown how the one particle electron an d positron energies and states and, consequently, the probability production of a pair are modified by the presence of a weak gravitational field treated perturbatively or by the presence of a strong gravitational field treated non perturbatively. In the first case, the most important result is that in the presence of a ( though weak) gravitational field perpendicular to the magnetic field it is possible to create pairs with the electron and the positron both in a TGS even if the magnetic field changes only in strength. Instead, the treatment of the non perturbative case resulted completely different because the electron an d positron one particle energies, unlike in Minkowski spacetime, are characterized by a continuous quantum number independent of the other quantum numbers and of the magnetic field. In this case, I have shown how the effects of the gravitational field on the production probability are really important and that they cannot be neglected. In particular, high-energy electrons an d positrons are more likely produced in the presence of a strong gravitational field than in Minkowski spacetime.
Description: 
2002/2003
URI: http://thesis2.sba.units.it/store/handle/item/12549
http://hdl.handle.net/10077/11580
Appears in Collections:PREGRESSO

Files in This Item:
File Description SizeFormat
20395.pdf3.72 MBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

349
checked on Jun 1, 2019

Download(s)

264
checked on Jun 1, 2019

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons