Please use this identifier to cite or link to this item:
Title: Inverse problems for p-Laplace type equations under monotonicity assumptions
Authors: Guo, Chang-Yu
Kar, Manas
Salo, Mikko
Keywords: inverse problemsp-Laplace equationDirichlet-to-Neumann mapunique continuation principle
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
We consider inverse problems for p-Laplace type equa-tions under monotonicity assumptions. In two dimensions, we show hat any two conductivities satisfying σ1 ≥ σ2 and having the same nonlinear Dirichlet-to-Neumann map must be identical. The proof is based on a monotonicity inequality and the unique continuation prin-ciple for p-Laplace type equations. In higher dimensions, where unique continuation is not known, we obtain a similar result for conductivities close to constant.
Type: Article
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13152
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat
4_RIMUT48.pdf2.34 MBAdobe PDFThumbnail
Show full item record

CORE Recommender

Page view(s) 50

checked on Oct 27, 2020

Download(s) 50

checked on Oct 27, 2020

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons