Please use this identifier to cite or link to this item:
Title: Quantitative uniqueness for zero-order perturbations of generalized Baouendi-Grushin operators
Authors: Banerjee, Agnid
Garofalo, Nicola
Keywords: quantitative uniquenessBaouendi-Grushin operators
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Based on a variant of the frequency function approach of Almgren, we establish an optimal bound on the vanishing order of solutions to stationary Schr¨odinger equations associated to a class of subelliptic equations with variable coefficients whose model is the so-called Baouendi-Grushin operator. Such bound provides a quantitative form of strong unique continuation that can be thought of as an analogue of the recent results of Bakri and Zhu for the standard Laplacian.
Type: Article
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13156
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat
8_RIMUT48.pdf1.99 MBAdobe PDFThumbnail
Show full item record

CORE Recommender

Page view(s)

checked on Oct 23, 2020


checked on Oct 23, 2020

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons