Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/13159
Title: Some properties of De Giorgi classes
Authors: Di Benedetto, Emmanuele
Gianazza, Ugo
Keywords: De Giorgi classesHölder continuityHarnack inequalityhigher integrabilityboundary behaviordecay estimates
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Abstract: The DeGiorgi classes [DG]p(E; γ), defined in (1)± below encompass, solutions of quasilinear elliptic equations with measurable coefficients as well as minima and Q-minima of variational integrals. For these classes we present some new results (§ 2and§ 3.1), and some known facts scattered in the literature (§ 3–§ 5), and formulate some open issues (§ 6).
URI: http://hdl.handle.net/10077/13159
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13159
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat
11_RIMUT48.pdf1.93 MBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

245
checked on Apr 11, 2019

Download(s)

168
checked on Apr 11, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons