Please use this identifier to cite or link to this item:
Title: Uniqueness result for an inverse conductivity recovery problem with application to EEG
Authors: Clerc, Maureen
Leblond, Juliette
Marmorat, Jean-Paul
Papageorgakis, Christos
Keywords: elliptic and Laplace-Poisson PDEinverse conductivity recovery problemspherical harmonicsEEG
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Abstract: Abstract. Considering a geometry made of three concentric spherical nested layers, (brain, skull, scalp) each with constant homogeneous conductivity, we establish a uniqueness result in inverse conductivity estimation, from partial boundary data in presence of a known source term. We make use of spherical harmonics and linear algebra computations, that also provide us with stability results and a robust reconstruction algorithm. As an application to electroencephalography (EEG), in a spherical 3-layer head model (brain, skull, scalp), we numerically estimate the skull conductivity from available data (electrical potential at electrodes locations on the scalp, vanishing current flux) and given pointwise dipolar sources in the brain.
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13165
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat 
18_RIMUT48.pdf2.32 MBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Oct 17, 2018


checked on Oct 17, 2018

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons