Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/13165
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Clerc, Maureen | - |
dc.contributor.author | Leblond, Juliette | - |
dc.contributor.author | Marmorat, Jean-Paul | - |
dc.contributor.author | Papageorgakis, Christos | - |
dc.date.accessioned | 2016-11-23T06:54:23Z | - |
dc.date.available | 2016-11-23T06:54:23Z | - |
dc.date.issued | 2016 | - |
dc.identifier.issn | 0049-4704 | - |
dc.identifier.uri | http://hdl.handle.net/10077/13165 | - |
dc.description.abstract | Abstract. Considering a geometry made of three concentric spherical nested layers, (brain, skull, scalp) each with constant homogeneous conductivity, we establish a uniqueness result in inverse conductivity estimation, from partial boundary data in presence of a known source term. We make use of spherical harmonics and linear algebra computations, that also provide us with stability results and a robust reconstruction algorithm. As an application to electroencephalography (EEG), in a spherical 3-layer head model (brain, skull, scalp), we numerically estimate the skull conductivity from available data (electrical potential at electrodes locations on the scalp, vanishing current flux) and given pointwise dipolar sources in the brain. | en |
dc.publisher | EUT Edizioni Università di Trieste | - |
dc.relation.ispartofseries | Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics | it_IT |
dc.relation.ispartofseries | 48 (2016) | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | elliptic and Laplace-Poisson PDE | - |
dc.subject | inverse conductivity recovery problem | - |
dc.subject | spherical harmonics | - |
dc.subject | EEG | - |
dc.title | Uniqueness result for an inverse conductivity recovery problem with application to EEG | en |
dc.type | Article | - |
dc.identifier.doi | 10.13137/2464-8728/13165 | - |
dc.subject.msc2010 | 31B20, 33C55, 35J05, 35J25, 35Q61, 65R32, 92C55 | - |
dc.identifier.eissn | 2464-8728 | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.openairetype | article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
18_RIMUT48.pdf | 2.32 MB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
390
Last Week
1
1
Last month
checked on Jan 18, 2021
Download(s)
156
checked on Jan 18, 2021
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License