Please use this identifier to cite or link to this item:
Title: Notes on a combinatorial identity
Authors: Alzer, Horst
Prodinger, Helmut
Keywords: Combinatorial identityq-binomial coefficientcompletely monotonicpartial fraction decomposition
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Abstract: We present a short and simple proof by induction for where ٢، > 1 is an integer and m 1— ,() ب,..., —n is ٠. complex number. This is ٠. q-analogue ٠/ a combinatorial identity obtained by Kirschen- hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover, we show that the alternating q-binomial .أس?؟ is completely monotonic with respect ،٠ m, if m > 0 and رل,ه) ع و• The general case where the exponent ‘ث is replaced by ٠. positive integer d is dealt with using the elementary technique of partial fraction decomposition.
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13171
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat 
25_RIMUT48.pdf921.84 kBAdobe PDFView/Open
Show full item record

CORE Recommender

Page view(s)

checked on Oct 21, 2018


checked on Oct 21, 2018

Google ScholarTM



This item is licensed under a Creative Commons License Creative Commons