Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/13171
Title: Notes on a combinatorial identity
Authors: Alzer, Horst
Prodinger, Helmut
Keywords: Combinatorial identityq-binomial coefficientcompletely monotonicpartial fraction decomposition
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Abstract: We present a short and simple proof by induction for where ٢، > 1 is an integer and m 1— ,() ب,..., —n is ٠. complex number. This is ٠. q-analogue ٠/ a combinatorial identity obtained by Kirschen- hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover, we show that the alternating q-binomial .أس?؟ is completely monotonic with respect ،٠ m, if m > 0 and رل,ه) ع و• The general case where the exponent ‘ث is replaced by ٠. positive integer d is dealt with using the elementary technique of partial fraction decomposition.
URI: http://hdl.handle.net/10077/13171
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13171
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat 
25_RIMUT48.pdf921.84 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

136
checked on Oct 21, 2018

Download(s)

107
checked on Oct 21, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons