Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/13171
Title: Notes on a combinatorial identity
Authors: Alzer, Horst
Prodinger, Helmut
Keywords: Combinatorial identityq-binomial coefficientcompletely monotonicpartial fraction decomposition
Issue Date: 2016
Publisher: EUT Edizioni Università di Trieste
Series/Report no.: Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics
48 (2016)
Abstract: 
We present a short and simple proof by induction for
where ٢، > 1 is an integer and m 1— ,() ب,..., —n is ٠. complex number.
This is ٠. q-analogue ٠/ a combinatorial identity obtained by Kirschen-
hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover,
we show that the alternating q-binomial .أس?؟ is completely monotonic
with respect ،٠ m, if m > 0 and رل,ه) ع و• The general case where
the exponent ‘ث is replaced by ٠. positive integer d is dealt with using the
elementary technique of partial fraction decomposition.
Type: Article
URI: http://hdl.handle.net/10077/13171
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/13171
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)

Files in This Item:
File Description SizeFormat
25_RIMUT48.pdf921.84 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

348
checked on Oct 27, 2020

Download(s)

289
checked on Oct 27, 2020

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons