Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/13171
DC FieldValueLanguage
dc.contributor.authorAlzer, Horst-
dc.contributor.authorProdinger, Helmut-
dc.date.accessioned2016-11-23T06:54:24Z-
dc.date.available2016-11-23T06:54:24Z-
dc.date.issued2016-
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/13171-
dc.description.abstractWe present a short and simple proof by induction for where ٢، > 1 is an integer and m 1— ,() ب,..., —n is ٠. complex number. This is ٠. q-analogue ٠/ a combinatorial identity obtained by Kirschen- hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover, we show that the alternating q-binomial .أس?؟ is completely monotonic with respect ،٠ m, if m > 0 and رل,ه) ع و• The general case where the exponent ‘ث is replaced by ٠. positive integer d is dealt with using the elementary technique of partial fraction decomposition.en
dc.publisherEUT Edizioni Università di Trieste-
dc.relation.ispartofseriesRendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematicsit_IT
dc.relation.ispartofseries48 (2016)-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectCombinatorial identity-
dc.subjectq-binomial coefficient-
dc.subjectcompletely monotonic-
dc.subjectpartial fraction decomposition-
dc.titleNotes on a combinatorial identityen
dc.typeArticle-
dc.identifier.doi10.13137/2464-8728/13171-
dc.subject.msc201005A19, 11B65-
dc.identifier.eissn2464-8728-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.48 (2016)
Files in This Item:
File Description SizeFormat
25_RIMUT48.pdf921.84 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s)

351
checked on Nov 27, 2020

Download(s) 50

294
checked on Nov 27, 2020

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons