Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)
  6. Positive decaying solutions to BVPs with mean curvature operator
 
  • Details
  • Metrics
Options

Positive decaying solutions to BVPs with mean curvature operator

Došlá, Zuzana
•
Marini, Mauro
•
Matucci, Serena
2017
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/16210
http://hdl.handle.net/10077/16210
  • Article

e-ISSN
2464-8728
Abstract
A boundary value problem on the whole half-closed interval [1,∞) , associated to diff erential equations with the Euclidean mean curvature operator or with the Minkowski mean curvature operator is here considered. By using a new approach, based on a linearization device and some properties of principal solutions of certain disconjugate second-order linear equations, the existence of global positive decaying solutions is examined.
Journal
Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of
49 (2017)
Subjects
  • Second order nonlinea...

  • Euclidean mean curvat...

  • Minkowski mean curvat...

  • Radial solution

  • Principal solution

  • Disconjugacy

Publisher
EUT Edizioni Università di Trieste
Source
Z. Došlá, M. Marini, S. Matucci, "Positive decaying solutions to BVPs with mean curvature operator", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 147-164
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

10_RIMUT_DoslaetAl.pdf

Format

Adobe PDF

Size

302.82 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback