Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16211
Title: Bifurcation from infinity and multiplicity of solutions for nonlinear periodic boundary value problems
Authors: Mavinga, Nsoki
Nkashama, Mubenga N.
Keywords: Nonlinear periodic bvpmaximum principlesprincipal eigenvalueresonancemultiplicitybifurcation from infinityoscillatory conditionsa-priori estimates
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: Nsoki Mavinga, Mubenga N. Nkashama, "Bifurcation from infinity and multiplicity of solutions for nonlinear periodic boundary value problems", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 165-191
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: We are concerned with multiplicity and bifurcation results for solutions of nonlinear second order diff erential equations with general linear part and periodic boundary conditions. We impose asymptotic conditions on the nonlinearity and let the parameter vary. We then proceed to establish a priori estimates and prove multiplicity results (for large-norm solutions) when the parameter belongs to a (nontrivial) continuum of real numbers. Our results extend and complement those in the literature. The proofs are based on degree theory, continuation methods, and bifurcation from infinity techniques.
URI: http://hdl.handle.net/10077/16211
ISSN: 0049-4704
eISSN: 2464-8728
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat 
11_RIMUT_MavingaNkashama.pdf393.74 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

33
checked on May 22, 2018

Download(s)

20
checked on May 22, 2018

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons