Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16212
Title: Global stability, or instability, of positive equilibria of p-Laplacian boundary value problems with p-convex nonlinearities
Authors: Rynne, Bryan P.
Keywords: Global stabilitypositive equilibriap-Laplacian
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: Bryan P. Rynne, "Global stability, or instability, of positive equilibria of p-Laplacian boundary value problems with p-convex nonlinearities", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 193-206
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: We consider the parabolic, initial value problem vt = Δp(v) + λg(x, v)φp(v), in Ω x (0,∞), v = 0, in ∂Ω x (0,∞), (IVP) v = v0 > 0, in Ω x {0}, where Ω is a bounded domain in RN , for some integer N > 1, with smooth boundary ∂Ω, φp(s) := |s|p−1 sgn s , s ∈ R , and Δp denotes the p -Laplacian, with p > max{2,N} , v0 ∈ C0(Ω) , and λ > 0 . The function g : Ω x [0,∞) → (0,∞) is C0 and, for each x ∈ Ω , the function g(x, ·) : [0,∞) → (0,∞) is Lipschitz continuous and strictly increasing. Clearly, (IVP) has the trivial solution v ≡ 0 , for all λ > 0 . In addition, there exists 0 < λmin(g) < λmax(g) such that: • if λ ∈/ (λmin(g),λmax(g)) then (IVP) has no non-trivial, positive equilibrium; • there exists a closed, connected set of positive equilibria bifurcating from (λmax(g), 0) and ‘meeting infinity’ at λ = λmin(g) . We prove the following results on the positive solutions of (IVP): • if 0 < λ < λmin(g) then the trivial solution is globally asymptotically stable; • if λmin(g) < λ < λmax(g) then the trivial solution is locally asymptotically stable and all non-trivial, positive equilibria are unstable; • if λmax(g) < λ then any non-trivial solution blows up in finite time.
URI: http://hdl.handle.net/10077/16212
ISSN: 0049-4704
eISSN: 2464-8728
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat 
12_RIMUT_Rynne.pdf360.18 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

31
checked on Jun 19, 2018

Download(s)

9
checked on Jun 19, 2018

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons