Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/16215
Title: | Positive radial solutions for systems with mean curvature operator in Minkowski space | Authors: | Gurban, Daniela Jebelean, Petru |
Keywords: | Minkowski curvature operator; system; positive solution; nonexistence/ existence; multiplicity; Leray-Schauder degree; critical point; lower and upper solutions | Issue Date: | 2017 | Publisher: | EUT Edizioni Università di Trieste | Source: | Daniela Gurban, Petru Jebelean, "Positive radial solutions for systems with mean curvature operator in Minkowski space", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 245-264 | Journal: | Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics | Part of: | 49 (2017) | Abstract: | We are concerned with a Dirichlet system, involving the mean curvature operator in Minkowski space M(w) = div (∇w / 1−|∇w|2) in a ball in RN. Using topological degree arguments, critical point theory and lower and upper solutions method, we obtain non existence, existence and multiplicity of radial, positive solutions. The examples we provide involve Lane-Emden type nonlinearities in both sublinear and superlinear cases. |
Type: | Article | URI: | http://hdl.handle.net/10077/16215 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/16215 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
15_RIMUT_GurbanJebelean.pdf | 348.59 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
347
checked on Jul 5, 2022
Download(s)
124
checked on Jul 5, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License