Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16216
Title: On a family of Kepler problems with linear dissipation
Authors: Margheri, Alessandro
Ortega, Rafael
Rebelo, Carlota
Keywords: Kepler equationdrag linear in the velocityfirst integral
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: A. Margheri, R. Ortega, C. Rebelo, "On a family of Kepler problems with linear dissipation", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 265-286
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: 
We consider the dissipative Kepler problem for a family of dissipations that is linear in the velocity. Under mild assumptions on the drag coefficient, we show that its forward dynamics is qualitatively similar to the one obtained in [15] and [16] for a constant drag coefficient. In particular, we extend to this more general framework the existence of a continuous vector-valued first integral I obtained as the limit along the trajectories of the Runge-Lenz vector. We also establish the existence of asymptotically circular orbits, so improving the result about the range of I contained in [16].
Type: Article
URI: http://hdl.handle.net/10077/16216
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/16216
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat
16_RIMUT_MargherietAl.pdf360.3 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

261
checked on Jul 5, 2022

Download(s)

75
checked on Jul 5, 2022

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons