Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16217
Title: Principal eigenvalues of weighted periodic-parabolic problems
Authors: Antón, Inmaculada
López-Gómez, Julián
Keywords: periodic-parabolic problemsmaximum principleprincipal eigenvalueglobal properties
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: Inmaculada Antón, Julián López-Gómez, "Principal eigenvalues of weighted periodic-parabolic problems", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 287-318
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: Based on a recent characterization of the strong maximum principle, [3], this paper gives some periodic parabolic counterparts of some of the results of Chapters 8 and 9 of J. L´opez-G´omez [22]. Among them count some pivotal monotonicity properties of the principal eigenvalue σ[P+V,B,QT ], as well as its concavity with respect to the periodic potential V through a point-wise periodic-parabolic Donsker–Varadhan min-max characterization. Finally, based on these findings, this paper sharpens, substantially, some classical results of A. Beltramo and P. Hess [4], K. J. Brown and S. S. Lin [6], and P. Hess [14] on the existence and uniqueness of principal eigenvalues for weighted boundary value problems.
URI: http://hdl.handle.net/10077/16217
ISSN: 0049-4704
eISSN: 2464-8728
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat 
17_RIMUT_AntonLopez.pdf568.18 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

30
checked on Apr 24, 2018

Download(s)

13
checked on Apr 24, 2018

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons