Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/16217
Title: | Principal eigenvalues of weighted periodic-parabolic problems | Authors: | Antón, Inmaculada López-Gómez, Julián |
Keywords: | periodic-parabolic problems; maximum principle; principal eigenvalue; global properties | Issue Date: | 2017 | Publisher: | EUT Edizioni Università di Trieste | Source: | Inmaculada Antón, Julián López-Gómez, "Principal eigenvalues of weighted periodic-parabolic problems", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 287-318 | Journal: | Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics | Part of: | 49 (2017) | Abstract: | Based on a recent characterization of the strong maximum principle, [3], this paper gives some periodic parabolic counterparts of some of the results of Chapters 8 and 9 of J. L´opez-G´omez [22]. Among them count some pivotal monotonicity properties of the principal eigenvalue σ[P+V,B,QT ], as well as its concavity with respect to the periodic potential V through a point-wise periodic-parabolic Donsker–Varadhan min-max characterization. Finally, based on these findings, this paper sharpens, substantially, some classical results of A. Beltramo and P. Hess [4], K. J. Brown and S. S. Lin [6], and P. Hess [14] on the existence and uniqueness of principal eigenvalues for weighted boundary value problems. |
Type: | Article | URI: | http://hdl.handle.net/10077/16217 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/16217 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
17_RIMUT_AntonLopez.pdf | 568.18 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
245
checked on Jul 5, 2022
Download(s)
87
checked on Jul 5, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License