Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16217
Title: Principal eigenvalues of weighted periodic-parabolic problems
Authors: Antón, Inmaculada
López-Gómez, Julián
Keywords: periodic-parabolic problemsmaximum principleprincipal eigenvalueglobal properties
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: Inmaculada Antón, Julián López-Gómez, "Principal eigenvalues of weighted periodic-parabolic problems", in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 287-318
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: Based on a recent characterization of the strong maximum principle, [3], this paper gives some periodic parabolic counterparts of some of the results of Chapters 8 and 9 of J. L´opez-G´omez [22]. Among them count some pivotal monotonicity properties of the principal eigenvalue σ[P+V,B,QT ], as well as its concavity with respect to the periodic potential V through a point-wise periodic-parabolic Donsker–Varadhan min-max characterization. Finally, based on these findings, this paper sharpens, substantially, some classical results of A. Beltramo and P. Hess [4], K. J. Brown and S. S. Lin [6], and P. Hess [14] on the existence and uniqueness of principal eigenvalues for weighted boundary value problems.
URI: http://hdl.handle.net/10077/16217
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/16217
10.13137/2464-8728/16217
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat
17_RIMUT_AntonLopez.pdf568.18 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

108
checked on Dec 9, 2018

Download(s)

43
checked on Dec 9, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons