Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/16219
Title: | A periodic problem for first order differential equations with locally coercive nonlinearities | Authors: | Sovrano, Elisa Zanolin, Fabio |
Keywords: | Periodic solutions; Multiplicity results; Local coercivity; Coincidence degree | Issue Date: | 2017 | Publisher: | EUT Edizioni Università di Trieste | Source: | Elisa Sovrano, Fabio Zanolin, "A periodic problem for first order differential equations with locally coercive nonlinearities",in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 335-355 | Journal: | Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics | Part of: | 49 (2017) | Abstract: | In this paper we study the periodic boundary value problem associated with a first order ODE of the form x' + g(t, x) = s where s is a real parameter and g is a continuous function, T-periodic in the variable t. We prove an Ambrosetti-Prodi type result in which the classical uniformity condition on g(t, x) at infinity is considerably relaxed. The Carathéodory case is also discussed. |
Type: | Article | URI: | http://hdl.handle.net/10077/16219 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/16219 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
19_RIMUT_SovranoZanolin.pdf | 591.05 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
281
checked on Jul 4, 2022
Download(s)
106
checked on Jul 4, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License