Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/16219
Title: A periodic problem for first order differential equations with locally coercive nonlinearities
Authors: Sovrano, Elisa
Zanolin, Fabio
Keywords: Periodic solutionsMultiplicity resultsLocal coercivityCoincidence degree
Issue Date: 2017
Publisher: EUT Edizioni Università di Trieste
Source: Elisa Sovrano, Fabio Zanolin, "A periodic problem for first order differential equations with locally coercive nonlinearities",in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics", 49 (2017), Trieste, EUT Edizioni Università di Trieste, 2017, pp. 335-355
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Part of: 49 (2017)
Abstract: In this paper we study the periodic boundary value problem associated with a first order ODE of the form x' + g(t, x) = s where s is a real parameter and g is a continuous function, T-periodic in the variable t. We prove an Ambrosetti-Prodi type result in which the classical uniformity condition on g(t, x) at infinity is considerably relaxed. The Carathéodory case is also discussed.
URI: http://hdl.handle.net/10077/16219
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/16219
10.13137/2464-8728/16219
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.49 (2017)

Files in This Item:
File Description SizeFormat
19_RIMUT_SovranoZanolin.pdf591.05 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

118
checked on Dec 9, 2018

Download(s)

57
checked on Dec 9, 2018

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons