Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/21598
Title: Veronesean almost binomial almost complete intersections
Authors: Kahle, Thomas
Wagner, André
Keywords: Veronesecomplete intersectionbinomial idealmultigrading
Issue Date: 2018
Publisher: EUT Edizioni Università di Trieste
Source: Thomas Kahle, André Wagner, "Veronesean almost binomial almost complete intersections", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 50 (2018)", Trieste, EUT Edizioni Università di Trieste, 2018, pp. 65-79
Abstract: The second Veronese ideal I$_{n}$ contains a natural complete intersection J$_{n}$ of the same height, generated by the principal 2-minors of a symmetric (n x n)-matrix. We determine subintersections of the primary decomposition of J$_{n}$ where one intersectand is omitted. If I$_{n}$ is omitted, the result is a direct link in the sense of complete intersection liaison. These subintersections also yield interesting insights into binomial ideals and multigraded algebra. For example, if n is even, I$_{n}$ is a Gorenstein ideal and the intersection of the remaining primary components of J$_{n}$ equals J$_{n}$+ 〈f〉 for an explicit polynomial f constructed from the fibers of the Veronese grading map.
URI: http://hdl.handle.net/10077/21598
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/21598
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.50 (2018)

Files in This Item:
File Description SizeFormat
KahleWag.pdf324.53 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

69
checked on Apr 11, 2019

Download(s)

3
checked on Apr 11, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons