Please use this identifier to cite or link to this item:
Title: Veronesean almost binomial almost complete intersections
Authors: Kahle, Thomas
Wagner, André
Keywords: Veronesecomplete intersectionbinomial idealmultigrading
Issue Date: 2018
Publisher: EUT Edizioni Università di Trieste
Source: Thomas Kahle, André Wagner, "Veronesean almost binomial almost complete intersections", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 50 (2018)", Trieste, EUT Edizioni Università di Trieste, 2018, pp. 65-79
The second Veronese ideal I$_{n}$ contains a natural complete
intersection J$_{n}$ of the same height, generated by the principal 2-minors
of a symmetric (n x n)-matrix. We determine subintersections of
the primary decomposition of J$_{n}$ where one intersectand is omitted.
If I$_{n}$ is omitted, the result is a direct link in the sense of complete
intersection liaison. These subintersections also yield interesting insights
into binomial ideals and multigraded algebra. For example, if n is even,
I$_{n}$ is a Gorenstein ideal and the intersection of the remaining primary
components of J$_{n}$ equals J$_{n}$+ 〈f〉 for an explicit polynomial f constructed
from the fibers of the Veronese grading map.
Type: Article
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/21598
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.50 (2018)

Files in This Item:
File Description SizeFormat
KahleWag.pdf324.53 kBAdobe PDFThumbnail
Show full item record

CORE Recommender

Page view(s)

checked on Jul 4, 2022


checked on Jul 4, 2022

Google ScholarTM




This item is licensed under a Creative Commons License Creative Commons