Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/21598
DC FieldValueLanguage
dc.contributor.authorKahle, Thomasit
dc.contributor.authorWagner, Andréit
dc.date.accessioned2018-07-25T07:12:55Z-
dc.date.available2018-07-25T07:12:55Z-
dc.date.issued2018-
dc.identifier.citationThomas Kahle, André Wagner, "Veronesean almost binomial almost complete intersections", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 50 (2018)", Trieste, EUT Edizioni Università di Trieste, 2018, pp. 65-79it
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/21598-
dc.description.abstractThe second Veronese ideal I$_{n}$ contains a natural complete intersection J$_{n}$ of the same height, generated by the principal 2-minors of a symmetric (n x n)-matrix. We determine subintersections of the primary decomposition of J$_{n}$ where one intersectand is omitted. If I$_{n}$ is omitted, the result is a direct link in the sense of complete intersection liaison. These subintersections also yield interesting insights into binomial ideals and multigraded algebra. For example, if n is even, I$_{n}$ is a Gorenstein ideal and the intersection of the remaining primary components of J$_{n}$ equals J$_{n}$+ 〈f〉 for an explicit polynomial f constructed from the fibers of the Veronese grading map.it
dc.language.isoenit
dc.publisherEUT Edizioni Università di Triesteit
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internazionale*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVeroneseit
dc.subjectcomplete intersectionit
dc.subjectbinomial idealit
dc.subjectmultigradingit
dc.titleVeronesean almost binomial almost complete intersectionsit
dc.typeArticleit
dc.identifier.doi10.13137/2464-8728/21598-
dc.subject.msc201005E40it
dc.subject.msc201013A02it
dc.subject.msc201013H10it
dc.subject.msc201014M25it
dc.subject.msc201052B20it
dc.identifier.eissn2464-8728-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.50 (2018)
Files in This Item:
File Description SizeFormat
KahleWag.pdf324.53 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s)

271
checked on Aug 18, 2022

Download(s)

58
checked on Aug 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons