Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/21598
DC FieldValueLanguage
dc.contributor.authorKahle, Thomasit
dc.contributor.authorWagner, Andréit
dc.date.accessioned2018-07-25T07:12:55Z-
dc.date.available2018-07-25T07:12:55Z-
dc.date.issued2018-
dc.identifier.citationThomas Kahle, André Wagner, "Veronesean almost binomial almost complete intersections", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 50 (2018)", Trieste, EUT Edizioni Università di Trieste, 2018, pp. 65-79it
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/21598-
dc.description.abstractThe second Veronese ideal I$_{n}$ contains a natural complete intersection J$_{n}$ of the same height, generated by the principal 2-minors of a symmetric (n x n)-matrix. We determine subintersections of the primary decomposition of J$_{n}$ where one intersectand is omitted. If I$_{n}$ is omitted, the result is a direct link in the sense of complete intersection liaison. These subintersections also yield interesting insights into binomial ideals and multigraded algebra. For example, if n is even, I$_{n}$ is a Gorenstein ideal and the intersection of the remaining primary components of J$_{n}$ equals J$_{n}$+ 〈f〉 for an explicit polynomial f constructed from the fibers of the Veronese grading map.it
dc.language.isoenit
dc.publisherEUT Edizioni Università di Triesteit
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internazionale*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectVeroneseit
dc.subjectcomplete intersectionit
dc.subjectbinomial idealit
dc.subjectmultigradingit
dc.titleVeronesean almost binomial almost complete intersectionsit
dc.typeArticleit
dc.identifier.doi10.13137/2464-8728/21598-
dc.subject.msc201005E40it
dc.subject.msc201013A02it
dc.subject.msc201013H10it
dc.subject.msc201014M25it
dc.subject.msc201052B20it
dc.identifier.eissn2464-8728-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypearticle-
item.languageiso639-1en-
Appears in Collections:Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol.50 (2018)
Files in This Item:
File Description SizeFormat
KahleWag.pdf324.53 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s)

126
checked on Oct 16, 2019

Download(s)

4
checked on Oct 16, 2019

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons