Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/2581
Title: New strategies for efficient and practical genetic programming.
Authors: Fillon, Cyril
Supervisore/Tutore: Bartoli, Alberto
Issue Date: 18-Mar-2008
Publisher: Università degli studi di Trieste
Abstract: In the last decades, engineers and decision makers expressed a growing interest in the development of effective modeling and simulation methods to understand or predict the behavior of many phenomena in science and engineering. Many of these phenomena are translated in mathematical models for convenience and to carry out an easy interpretation. Methods commonly employed for this purpose include, for example, Neural Networks, Simulated Annealing, Genetic Algorithms, Tabu search, and so on. These methods all seek for the optimal or near optimal values of a predefined set of parameters of a model built a priori. But in this case, a suitable model should be known beforehand. When the form of this model cannot be found, the problem can be seen from another level where the goal is to find a program or a mathematical representation which can solve the problem. According to this idea the modeling step is performed automatically thanks to a quality criterion which drives the building process. In this thesis, we focus on the Genetic Programming (GP) approach as an automatic method for creating computer programs by means of artificial evolution based upon the original contributions of Darwin and Mendel. While GP has proven to be a powerful means for coping with problems in which finding a solution and its representation is difficult, its practical applicability is still severely limited by several factors. First, the GP approach is inherently a stochastic process. It means there is no guarantee to obtain a satisfactory solution at the end of the evolutionary loop. Second, the performances on a given problem may be strongly dependent on a broad range of parameters, including the number of variables involved, the quantity of data for each variable, the size and composition of the initial population, the number of generations and so on. On the contrary, when one uses Genetic Programming to solve a problem, he has two expectancies: on the one hand, maximize the probability to obtain an acceptable solution, and on the other hand, minimize the amount of computational resources to get this solution. Initially we present innovative and challenging applications related to several fields in science (computer science and mechanical science) which participate greatly in the experience gained in the GP field. Then we propose new strategies for improving the performances of the GP approach in terms of efficiency and accuracy. We probe our approach on a large set of benchmark problems in three different domains. Furthermore we introduce a new approach based on GP dedicated to symbolic regression of multivariate data-sets where the underlying phenomenon is best characterized by a discontinuous function. These contributions aim to provide a better understanding of the key features and the underlying relationships which make enhancements successful in improving the original algorithm.
Negli ultimi anni, ingegneri e progettisti hanno espresso un interesse crescente nello sviluppo di nuovi metodi di simulazione e di modellazione per comprendere e predire il comportamento di diversi fenomeni sia in ambito scientifico che ingegneristico. Molti di questi fenomeni vengono descritti attraverso modelli matematici che ne facilitano l'interpretazione. A questo fine, i metodi più comunemente impiegati sono, le tecniche basate sui Reti Neurali, Simulated Annealing, gli Algoritmi Genetici, la ricerca Tabu, ecc. Questi metodi vanno a determinare i valori ottimali o quasi ottimali dei parametri di un modello costruito a priori. E evidente che in tal caso, si dovrebbe conoscere in anticipo un modello idoneo. Quando ciò non è possibile, il problema deve essere considerato da un altro punto di vista: l'obiettivo è trovare un programma o una rappresentazione matematica che possano risolvere il problema. A questo scopo, la fase di modellazione è svolta automaticamente in funzione di un criterio qualitativo che guida il processo di ricerca. Il tema di ricerca di questa tesi è la programmazione genetica (“Genetic Programming” che chiameremo GP) e le sue applicazioni. La programmazione genetica si può definire come un metodo automatico per la generazione di programmi attraverso una simulazione artificiale dei principi relativi all'evoluzione naturale basata sui contributi originali di Darwin e di Mendel. La programmazione genetica ha dimostrato di essere un potente mezzo per affrontare quei problemi in cui trovare una soluzione e la sua rappresentazione è difficile. Però la sua applicabilità rimane severamente limitata da diversi fattori. In primo luogo, il metodo GP è inerentemente un processo stocastico. Ciò significa che non garantisce che una soluzione soddisfacente sarà trovata alla fine del ciclo evolutivo. In secondo luogo, le prestazioni su un dato problema dipendono fortemente da una vasta gamma di parametri, compresi il numero di variabili impiegate, la quantità di dati per ogni variabile, la dimensione e la composizione della popolazione iniziale, il numero di generazioni e così via. Al contrario, un utente della programmazione genetica ha due aspettative: da una parte, massimizzare la probabilità di ottenere una soluzione accettabile, e dall'altra, minimizzare la quantità di risorse di calcolo per ottenerla. Nella fase iniziale di questo lavoro sono state considerate delle applicazioni particolarmente innovative relative a diversi campi della scienza (informatica e meccanica) che hanno contributo notevolmente all'esperienza acquisita nel campo della programmazione genetica. In questa tesi si propone un nuovo procedimento con lo scopo di migliorare le prestazioni della programmazione genetica in termini di efficienza ed accuratezza. Abbiamo testato il nostro approccio su un ampio insieme di benchmarks in tre domini applicativi diversi. Si propone inoltre una tecnica basata sul GP per la regressione simbolica di data-set multivariati dove il fenomeno di fondo è caratterizzato da una funzione discontinua. Questi contributi cercano di fornire una comprensione migliore degli elementi chiave e dei meccanismi interni che hanno consentito il miglioramento dell'algoritmo originale.
Ciclo di dottorato: XX Ciclo
metadata.dc.subject.classification: INGEGNERIA DELL'INFORMAZIONE
Description: 2006/2007
Keywords: genetic programming, strategies, applications
Language: en
Type: Doctoral Thesis
Settore scientifico-disciplinare: ING-INF/05 Sistemi Di Elaborazione Delle Informazioni
NBN: urn:nbn:it:units-5790
Appears in Collections:Ingegneria industriale e dell'informazione

Files in This Item:
File Description SizeFormat 
Fillon PhD thesis.pdfPhD thesis8.88 MBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

1,283
checked on Oct 17, 2018

Download(s)

1,767
checked on Oct 17, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.