Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/27068
Title: | On elliptic curves of bounded degree in a polarized Abelian variety | Authors: | Guerra, Lucio | Keywords: | Elliptic curve; Abelian variety; polarization | Issue Date: | 2019 | Publisher: | EUT Edizioni Università di Trieste | Source: | Lucio Guerra, "On elliptic curves of bounded degree in a polarized Abelian variety", in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 51 (2019)", Trieste, EUT Edizioni Università di Trieste, 2019, pp. 105-123 | Abstract: | For a polarized complex Abelian variety $A$ we study the function $N_A(t)$ counting the number of elliptic curves in $A$ with degree bounded by $t$. This extends our previous work in dimension two. We describe the collection of elliptic curves in the product $A = S \times F$ of an Abelian variety and an elliptic curve by means of an explicit parametrization, and in terms of the parametrization we express the degrees of elliptic curves relative to a split polarization. When this is applied to the self product $A = E^k$ of an elliptic curve, it turns out that an asymptotic estimate of the counting function $N_A(t)$ can be obtained from an asymptotic study of the degree form on the group of endomorphisms of the elliptic curve. |
Type: | Article | URI: | http://hdl.handle.net/10077/27068 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/27068 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.51 (2019) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
6_Guerra_105-123.pdf | 217.48 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
119
checked on Jul 5, 2022
Download(s)
60
checked on Jul 5, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License