Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/30754
Title: Population dynamics in hostile neighborhoods
Authors: Amann, Herbert
Keywords: Degenerate quasilinear parabolic equationsreaction-diffusion systemsSobolev space well-posedness
Issue Date: 2020
Publisher: EUT Edizioni Università di Trieste
Source: Herbert Amann, "Population dynamics in hostile neighborhoods" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
A new class of quasilinear reaction-diffusion equations is introduced for which the mass flow never reaches the boundary. It is proved that the initial value problem is well-posed in an appropriate weighted Sobolev space setting.
Type: Article
URI: http://hdl.handle.net/10077/30754
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/30754
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue

Files in This Item:
File Description SizeFormat
A2_Amann.pdf342.22 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

118
checked on Nov 27, 2021

Download(s) 50

21
checked on Nov 27, 2021

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons