Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/30765
Title: Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space
Authors: Nagai, Tetsutaka
Yamada, Tetsuya
Keywords: attraction-repulsion chemotaxis systemattractive dominant casebound- edness of solutions
Issue Date: 2020
Publisher: EUT Edizioni Università di Trieste
Source: Tetsutaka Nagai, Tetsuya Yamada, "Boundedness of solutions to the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
We consider the Cauchy problem for an attraction-repulsion chemotaxis system in two-dimensional space. The system consists of three partial differential equations; a drift-diffusion equation incorporating terms for both chemoattraction and chemorepulsion, and two elliptic equations. We denote by β1 the coefficient of the attractant and by β2 that of the repellent. The boundedness of nonnegative solutions to the Cauchy problem was shown in the repulsive dominant case β1 < β2 and the balance case β1 = β2. In this paper, we study the boundedness problem to the Cauchy problem in the attractive dominant case β1 > β2.
Type: Article
URI: http://hdl.handle.net/10077/30765
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/30765
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), in progress

Files in This Item:
File Description SizeFormat
A7_Nagai.pdf313.66 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

49
checked on Oct 24, 2020

Download(s)

7
checked on Oct 24, 2020

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons