Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/30913
Title: | Past and recent contributions to indefinite sublinear elliptic problems | Authors: | Kaufmann, U. Ramos Quoirin, H. Umezu, K. |
Keywords: | elliptic sublinear problem; indefinite; strong maximum principle | Issue Date: | 2020 | Publisher: | EUT Edizioni Università di Trieste | Source: | U. Kaufmann, H. Ramos Quoirin and K. Umezu, "Past and recent contributions to indefinite sublinear elliptic problems" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020 | Journal: | Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics | Abstract: | We review the inde nite sublinear elliptic equation Δu =a(x)uq in a smooth bounded domain ΩCRN, with Dirichlet or Neumann homogeneous boundary conditions. Here 0 < q < 1 and a is continuous and changes sign, in which case the strong maximum principle does not apply. As a consequence, the set of nonnegative solutions of these problems has a rich structure, featuring in particular both dead core and/or positive solutions. Overall, we are interested in su_x000E_cient and necessary conditions on a and q for the existence of positive solu- tions. We describe the main results from the past decades, and combine it with our recent contributions. The proofs are briefly sketched. |
Type: | Article | URI: | http://hdl.handle.net/10077/30913 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/30913 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
A5_Kaufman.pdf | 955.43 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
85
checked on Jun 26, 2022
Download(s)
17
checked on Jun 26, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License