Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/30915
Title: Existence of attractors when diffusion and reaction have polynomial growth
Authors: Ahmad, Shair
Le, Dung
Keywords: Cross diffusion systemsH ölder regularityglobal existence
Issue Date: 2020
Publisher: EUT Edizioni Università di Trieste
Source: Shair Ahmad and Dung Le, "Existence of attractors when diffusion and reaction have polynomial growth" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Journal: Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
We study an interesting model, with reaction terms of Lotka-Volterra type, where diffusion and reaction have polynomial growth of any order. We establish existence of global attractors as well as exponential attractors. In the sequel we study the long time dynamics of an appropriate semigroup and show that it possesses a global attractor (and exponential attractors) in a certain Banach space.
Type: Article
URI: http://hdl.handle.net/10077/30915
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/30915
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue

Show full item record


CORE Recommender

Page view(s)

69
checked on Jun 26, 2022

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons