Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/30958
Title: Volume estimates for right-angled hyperbolic polyhedra
Authors: Egorov, Andrey
Vesnin, Andrei
Keywords: right-angled polyhedronideal polyhedronhyperbolic volume
Issue Date: 2020
Publisher: EUT Edizioni Università di Trieste
Source: Andrey Egorov and Andrei Vesnin, "Volume estimates for right-angled hyperbolic polyhedra" in: "Rendiconti dell’Istituto di matematica dell’Università di Trieste: an International Journal of Mathematics vol. 52 (2020)", EUT Edizioni Università di Trieste, Trieste, 2020
Journal: Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
By Andreev theorem acute-angled polyhedra of finite vo-
lume in a hyperbolic space H3 are uniquely determined by combinatorics
of their 1-skeletons and dihedral angles. For a class of compact right-
angled polyhedra and a class of ideal right-angled polyhedra estimates
of volumes in terms of the number of vertices were obtained by Atkin-
son in 2009. In the present paper upper estimates for both classes are
improved.
Type: Article
URI: http://hdl.handle.net/10077/30958
ISSN: 0049-4704
eISSN: 2464-8728
DOI: 10.13137/2464-8728/30958
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.52 (2020), 1st and 2nd Issue

Show full item record


CORE Recommender

Page view(s)

88
checked on Jun 26, 2022

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons