Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/31872
Title: | Some inequalities for the Riemann zeta function | Authors: | Alzer, Horst Kwong, Man Kam |
Keywords: | Riemann zeta function; Euler's constant; von Mangoldt function; inequalities | Issue Date: | 2021 | Publisher: | EUT Edizioni Università di Trieste | Source: | Horst Alzer, Man Kam Wong, "Some inequalities for the Riemann zeta function" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp. 11 | Journal: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics | Abstract: | Our main result states that for all real numbers s>1 we have \gamma < s (\frac{\zeta'(s)}{\zeta(s)}+\frac{1}{s-1}). \eqno (\ast) The constant lower bound \gamma is sharp. This refines an inequality published by Delange in 1987. Applications of (\ast) lead to a monotonicity theorem, namely, that \frac{(s-1)\zeta(s)}{s^{\alpha}} is strictly increasing on (1,\infty) if and only if \alpha \leq \gamma, and to additional inequalities for the zeta function. |
Type: | Article | URI: | http://hdl.handle.net/10077/31872 | ISSN: | 0049-4704 | eISSN: | 2464-8728 | DOI: | 10.13137/2464-8728/31872 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
art 5 Alzer DOI.pdf | 261.57 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
38
checked on Apr 12, 2021
Download(s)
5
checked on Apr 12, 2021
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License