Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/32275
Title: Doubling inequality at the boundary for the Kirchhoff-Love plate's equation with supported conditions
Authors: Morassi, Antonino
Rosset, Edi 
Sincich, Eva 
Vessella, Sergio
Keywords: Kirchhoff–Love elastic platesdoubling inequality at the boundaryunique continuationsupported conditions
Issue Date: 2021
Publisher: EUT Edizioni Università di Trieste
Source: Antonino Morassi, Edi Rosset, Eva Sincich, Sergio Vassella, "Doubling inequality at the boundary for the Kirchhoff-Love plate's equation with supported conditions" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp. 17
Journal: Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
In this article we derive a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate’s equation satisfying supported boundary conditions. To this end, we combine the use of a suitable conformal mapping which flattens the boundary and a reflection argument which guarantees the needed regularity of the extended solution. We finally apply inequalities of Carleman type in order to derive the result. The latter implies Strong Unique Continuation Property at the boundary (SUCPB).
Type: Article
URI: http://hdl.handle.net/10077/32275
ISSN: 0049-4704
eISBN: 2464-8728
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)

Show full item record


CORE Recommender

Page view(s)

27
checked on Aug 2, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons