Options
Doubling inequality at the boundary for the Kirchhoff-Love plate's equation with supported conditions
Morassi, Antonino
Rosset, Edi
Sincich, Eva
Vessella, Sergio
2021
Loading...
e-ISBN
2464-8728
Abstract
In this article we derive a doubling inequality at the boundary for solutions to the Kirchhoff-Love isotropic plate’s equation satisfying supported boundary conditions. To this end, we combine the use of a suitable conformal mapping which flattens the boundary and a reflection argument which guarantees the needed regularity of the extended solution. We finally apply inequalities of Carleman type in order to derive the result. The latter implies Strong Unique Continuation Property at the boundary (SUCPB).
Publisher
EUT Edizioni Università di Trieste
Source
Antonino Morassi, Edi Rosset, Eva Sincich, Sergio Vassella, "Doubling inequality at the boundary for the Kirchhoff-Love plate's equation with supported conditions" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp. 17
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
File(s)