Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/32850
Title: | A note on the Nielsen realization problem for connected sums of S² X S¹ | Authors: | Zimmermann, Bruno P. | Keywords: | 3-manifold; connected sums of S² × S¹; finite group action; mapping class group; outer automorphism group of the fundamental group; Nielsen realization prob-lem | Issue Date: | 2021 | Publisher: | EUT Edizioni Università di Trieste | Source: | Bruno P. Zimmermann, "A note on the Nielsen realization problem for connected sums of S² X S¹" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp. 1-7 | Journal: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics | Abstract: | We consider finite group-actions on 3-manifolds Hg obtained as the connected sum of g copies of S² × S¹, with free funda- mental group Fg of rank g. We prove that, for g > 1, a finite group of diffeomorphisms of Hg inducing a trivial action on homology is cyclic and embeds into an S¹-action on Hg. As a consequence, no nontrivial element of the twist subgroup of the mapping class group of Hg (gen-erated by Dehn twists along embedded 2-spheres) can be realized by a periodic diffeomorphism of Hg (in the sense of the Nielsen realization problem). We also discuss when a finite subgroup of the outer automor- phism group Out(Fg) of the fundamental group of Hg can be realized by a group of diffeomorphisms of Hg. |
Type: | Article | URI: | http://hdl.handle.net/10077/32850 | ISSN: | 0049-4704 | eISBN: | 2464-8728 | DOI: | 10.13137/2464-8728/32850 | Rights: | Attribution-NonCommercial-NoDerivatives 4.0 Internazionale |
Appears in Collections: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
RIMUT_2021_Zimmermann.pdf | 271.47 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s)
100
checked on May 21, 2022
Download(s)
6
checked on May 21, 2022
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License