Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/32864
Title: Remarks on a class of generalized Liénard planar systems
Authors: Villari, Gabriele
Zanolin, Fabio
Keywords: Generalized Liénard equationsLimit cyclesQualitative theory of planar dynamical systemsAveraging and bifurcation
Issue Date: 2021
Publisher: EUT Edizioni Università di Trieste
Source: Gabriele Villari, Fabio Zanolin, "Remarks on a class of generalized Liénard planar systems" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)", EUT Edizioni Università di Trieste, Trieste, 2021. pp.
Journal: Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Abstract: 
We continue the recent investigation [40] about the qualitative properties of the solutions for a class of generalized Liénard systems of the form ẋ = y − F (x, y), ẏ = −g(x). We present some results on the existence/non-existence of limit cycles depending on different growth assumptions of F (·, y). The case of asymmetric conditions at infinity for g(x) and F (x, ·) is also examined. In the second part of the article we consider also a bifurcation result for small limit cycles as well as we discuss the complex dynamics associated to a periodically perturbed reversible system.
Type: Article
URI: http://hdl.handle.net/10077/32864
ISSN: 0049-4704
eISBN: 2464-8728
DOI: 10.13137/2464-8728/32864
Rights: Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Appears in Collections:Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.53 (2021)

Files in This Item:
File Description SizeFormat
RIMUT_2021_Villari-Zanolin.pdf1.02 MBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s)

127
checked on May 21, 2022

Download(s)

24
checked on May 21, 2022

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons