Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/3341
Title: | Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign | Authors: | Canuto, Bruno Rial, Diego |
Keywords: | Overdetermined Boundary Value Problem; Elliptic Equation; Radial Symmetry | Issue Date: | 2009 | Publisher: | EUT - Edizioni Università di Trieste | Source: | Bruno Canuto, Diego Rial, "Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign", in Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 40 (2008), pp. 1-27. | Series/Report no.: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics 40 (2008) |
Abstract: | We prove that the only domain $\Omega$ such that there exists a solution to the following overdetermined problem $\Deltau+\omega2u=−1$ in in $\Omega$, u = 0 on $\partial\Omega$, and $\partialnu = c$ on $\partial\Omega$, is the ball B1, independently on the sign of u, if we assume that the boundary $\partial\Omega$ is a perturbation (no necessarily regular) of the unit sphere $\partialB1$ of Rn. Here $\omega2 \neq (\lambdan)n\geq1$ (the eigenvalues of $−\Delta$ in B1 with Dirichlet boundary conditions), and $\omega \Lambda$, where $\Lambda$ is a enumerable set of R+, whose limit points are the values $\lambda1m$, for some integer $m\geq1$, $\lambda1m$ being the mth-zero of the first-order Bessel function I1. |
Description: | pp.1-27 |
Type: | Article | URI: | http://hdl.handle.net/10077/3341 | ISSN: | 00494704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.40 (2008) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
01Canuto_Rial.pdf | 200.22 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 5
1,508
checked on Jul 6, 2022
Download(s) 50
965
checked on Jul 6, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.