Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3341
Title: Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign
Authors: Canuto, Bruno
Rial, Diego
Keywords: Overdetermined Boundary Value ProblemElliptic EquationRadial Symmetry
Issue Date: 2009
Publisher: EUT - Edizioni Università di Trieste
Source: Bruno Canuto, Diego Rial, "Local Overdetermined Linear Elliptic Problems in Lipschitz Domains with Solutions Changing Sign", in Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 40 (2008), pp. 1-27.
Series/Report no.: Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics
40 (2008)
Abstract: We prove that the only domain $\Omega$ such that there exists a solution to the following overdetermined problem $\Deltau+\omega2u=−1$ in in $\Omega$, u = 0 on $\partial\Omega$, and $\partialnu = c$ on $\partial\Omega$, is the ball B1, independently on the sign of u, if we assume that the boundary $\partial\Omega$ is a perturbation (no necessarily regular) of the unit sphere $\partialB1$ of Rn. Here $\omega2 \neq (\lambdan)n\geq1$ (the eigenvalues of $−\Delta$ in B1 with Dirichlet boundary conditions), and $\omega \Lambda$, where $\Lambda$ is a enumerable set of R+, whose limit points are the values $\lambda1m$, for some integer $m\geq1$, $\lambda1m$ being the mth-zero of the first-order Bessel function I1.
Description: pp.1-27
URI: http://hdl.handle.net/10077/3341
ISSN: 00494704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.40 (2008)

Files in This Item:
File Description SizeFormat 
01Canuto_Rial.pdf200.22 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

1,237
checked on Feb 24, 2018

Download(s)

764
checked on Feb 24, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.