Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.54 (2022)
  6. Monotonicity theorems and inequalities for certain sine sums
 
  • Details
  • Metrics
Options

Monotonicity theorems and inequalities for certain sine sums

Alzer, Horst
•
Kwong, Man Kam
2022
Loading...
Thumbnail Image
ISSN
0049-4704
DOI
10.13137/2464-8728/34261
http://hdl.handle.net/10077/34261
  • Article

e-ISSN
2464-8728
Abstract
Inspired by the work of Askey-Steinig, Szeg\"o, and Schweitzer, we provide several monotonicity theorems and inequalities for certain sine sums. Among others, we prove that for $n\geq 1$ and $x\in (0,\pi/2)$, we have
$$ \frac{d}{dx} \frac{C_n(x)}{1-\cos(x)}<0 \quad\mbox{and} \quad \frac{d}{dx} \left(1-\cos(x)\right)C_n(x)>0, $$ where $$ C_n(x)=\sum_{k=1}^n\frac{\sin((2k-1)x)}{2k-1} $$ denotes Carslaw's sine polynomial. Another result states that the inequality $$ \sum_{k=1}^n (n-k+a)(n-k+b) k \sin(kx)>0 \quad (a,b\in \mathbb{R}) $$ holds for all $n\geq 1$ and $x\in (0,\pi)$ if and only if $a=b=1$. Many corollaries and applications of these results are given. Among them, we present a two-parameter class of absolutely monotonic rational functions.
Journal
Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics 
Subjects
  • Sine sum

  • inequality

  • absolutely monotonic

  • rational function

  • subadditive

Publisher
EUT Edizioni Università di Trieste
Source
Horst Alzer, Man Kam Kwong, "Monotonicity theorems and inequalities for certain sine sums" in: "Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics vol.54 (2022)", EUT Edizioni Università di Trieste, Trieste, 2022, pp. 89-105
Languages
en
Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
File(s)
Loading...
Thumbnail Image
Download
Name

06-Alzer_Kwong.pdf

Format

Adobe PDF

Size

293.89 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback