Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/3886
Title: | Gauge theory: form Physics to Geometry | Authors: | Bruzzo, Ugo | Keywords: | Gauge Theory; Instantons; Moduli Spaces; Instanton Counting | Issue Date: | 2010 | Publisher: | EUT Edizioni Università di Trieste | Source: | Ugo Bruzzo, "Gauge theory: form Physics to Geometry", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 (2010), pp. 103-128. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 (2010) | Abstract: | Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces. |
Type: | Book Chapter | URI: | http://hdl.handle.net/10077/3886 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.42 (2010) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bruzzo RendMat42.pdf | 500.93 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 10
1,187
checked on Feb 5, 2023
Download(s) 5
4,751
checked on Feb 5, 2023
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.