Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3886
Title: Gauge theory: form Physics to Geometry
Authors: Bruzzo, Ugo
Keywords: Gauge TheoryInstantonsModuli SpacesInstanton Counting
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Source: Ugo Bruzzo, "Gauge theory: form Physics to Geometry", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 (2010), pp. 103-128.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 (2010)
Abstract: 
Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.
Type: Book
URI: http://hdl.handle.net/10077/3886
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.42 (2010)

Files in This Item:
File Description SizeFormat
Bruzzo RendMat42.pdf500.93 kBAdobe PDFThumbnail
View/Open
Show full item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



CORE Recommender

Page view(s) 20

1,071
checked on Apr 2, 2020

Download(s) 5

4,604
checked on Apr 2, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.