Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3921
Title: $L^p-L^q$-Decay Estimates for the Klein-Gordon Equation in the Anti-de~Sitter Space-Time
Authors: Galstian, Anahit
Keywords: anti de Sitter spacetimeKlein-Gordon equationdecay estimates
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Source: Anahit Galstian, "$L^p-L^q$-Decay Estimates for the Klein-Gordon Equation in the Anti-de~Sitter Space-Time”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 suppl. (2010), pp. 27-50.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 suppl. (2010)
Abstract: We derive $L^p-L^q$ - decay estimates for the solutions of the Cauchy problem for the Klein-Gordon equation in the anti-de Sitter spacetime, that is, for $\Box_g u - m^2 u = f$ in models of mathematical cosmology. The obtained $L^p$--$L^q$ estimates imply exponential decay of the solutions for large times.
URI: http://hdl.handle.net/10077/3921
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.42 (2010) s.

Files in This Item:
File Description SizeFormat 
Galstian.pdf263.07 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

993
checked on Feb 18, 2018

Download(s)

336
checked on Feb 18, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.