Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/3923
Title: Hyperbolic-Parabolic Singular Perturbation for Kirchhoff Equations with Weak Dissipation
Authors: Ghisi, Marina
Gobbino, Massimo
Keywords: hyperbolic-parabolic singular perturbationKirchhoff equationsweak dissipationquasilinear hyperbolic equations
Issue Date: 2010
Publisher: EUT Edizioni Università di Trieste
Source: Marina Ghisi, Massimo Gobbino, "Hyperbolic-Parabolic Singular Perturbation for Kirchhoff Equations with Weak Dissipation”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 42 suppl. (2010), pp. 67-88.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics;42 suppl. (2010)
Abstract: 
We consider Kirchhoff equations with a small parameter $\varepsilon$ in front of the second-order time-derivative, and a dissipative term whose coefficient may tend to $0$ as $t\to +\infty$ (weak dissipation).
In this note we present some recent results concerning existence of global solutions, and their asymptotic behavior both as $t\to +\infty$ and as $\varepsilon\to 0^{+}$. Since the limit equation is of parabolic type, this is usually referred to as a hyperbolic-parabolic singular perturbation problem.
We show in particular that the equation exhibits hyperbolic or parabolic behavior depending on the values of the parameters.
Type: Article
URI: http://hdl.handle.net/10077/3923
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.42 (2010) s.

Files in This Item:
File Description SizeFormat
GhisiGobbino1.pdf212.31 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 20

1,066
Last Week
9
Last month
checked on Oct 27, 2020

Download(s)

447
checked on Oct 27, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.