Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4102
Title: | Gröbner Bases for Submodules of $\mathbb Z^n$ | Authors: | Boffi, Giandomenico Logar, Alessandro |
Issue Date: | 2007 | Publisher: | EUT Edizioni Università di Trieste | Source: | Giandomenico Boffi, Alessandro Logar, "Gröbner Bases for Submodules of $\mathbb Z^n$", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 39 (2007), pp. 43-62. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 39 (2007) |
Abstract: | We define Gröbner bases for submodules of $\mathbb Z^n$ and characterize minimal and reduced bases combinatorially in terms of minimal elements of suitable partially ordered subsets of $\mathbb Z^n$. Then we show that Gröbner bases for saturated pure binomial ideals of K[x_1, . . . , x_n], char (K) ≠ 2, can be immediately derived from Gröbner bases for appropriate corresponding submodules of $\mathbb Z^n$. This suggests the possibility of calculating the Gröbner bases of the ideals without using the Buchberger algorithm. |
Type: | Article | URI: | http://hdl.handle.net/10077/4102 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.39 (2007) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BoffiLogarRendMat39.pdf | 192 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
683
checked on Jun 26, 2022
Download(s) 50
384
checked on Jun 26, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.