Repository logo
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
Repository logo
  • Communities & Collections
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.39 (2007)
  6. On Approximation of Linear Second Order Elliptic Partial Differential Equations with Analytic Coefficients
 
  • Details
  • Metrics
Options

On Approximation of Linear Second Order Elliptic Partial Differential Equations with Analytic Coefficients

Kumar, Devendra
2007
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4119
  • Article

Abstract
The linear second-order elliptic differential equation
with real-valued coefficients that are entire functions on $\Im^2$
and whose coefficient $c(x, y) \leq 0$ on the disk $D : x^2+y^2\leq1$
is given by
$\Delta^2 v+a(x,y)v_x + b(x,y)v_y+c(x,y)v=0, (x,y)\in E^2$.
The ideas of Bernstein and Saff have been applied by McCoy [9,
10] to study the singularities of certain second-order elliptic equations
with singular coefficients. These results contain calculations
of order and type of entire function potentials in terms
of best polynomial approximation errors. Here some inequalities
concerning order and type for the given equation have been
obtained.
Subjects
  • Elliptic Partial Diff...

  • Bergman and Gilbert I...

  • Order and Type

  • Approximation Error

Publisher
EUT Edizioni Università di Trieste
Source
Devendra Kumar, "On Approximation of Linear Second Order Elliptic Partial Differential Equations with Analytic Coefficients”, in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 39 (2007), pp. 359–373.
Series/Report
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
39 (2007)
Languages
en
File(s)
Loading...
Thumbnail Image
Name

KumarRendMat39.pdf

Size

132.9 KB

Format

Adobe PDF

Checksum (MD5)

dabb2d2df7c5302996dd7b1ed2f17907

Download
Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback