Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4144
Title: Universal Gröbner Bases for Designs of Experiments
Authors: Maruri-Aguilar, Hugo
Issue Date: 2005
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source: Hugo Maruri-Aguilar, "Universal Gröbner Bases for Designs of Experiments", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 37 (2005), pp. 95-119.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
37 (2005)
Abstract: 
Universal Gröbner bases (UGB) are a useful tool to
obtain a set of different models identified by an experimental design.
Usually, the algorithms to obtain a UGB for the ideal of
a design are computationally intensive. Babson et al. (2003)
propose a methodology to construct UGB in polynomial time.
Their methodology constructs a list of term orders based upon
the Hilbert zonotope. We focus on the generation of such a list.
We use results on hyperplane arrangements to present a theorem
which simplifies the computation of term orders for designs in
two dimensions. Our theorem constructs directly the normal fan
of the Hilbert zonotope.
Type: Article
URI: http://hdl.handle.net/10077/4144
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.37 (2005)

Files in This Item:
File Description SizeFormat
Maruri-AguilarRendMat37.pdf251.08 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

661
checked on Jun 29, 2022

Download(s) 50

486
checked on Jun 29, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.