Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4144
Title: Universal Gröbner Bases for Designs of Experiments
Authors: Maruri-Aguilar, Hugo
Issue Date: 2005
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source: Hugo Maruri-Aguilar, "Universal Gröbner Bases for Designs of Experiments", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 37 (2005), pp. 95-119.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
37 (2005)
Abstract: Universal Gröbner bases (UGB) are a useful tool to obtain a set of different models identified by an experimental design. Usually, the algorithms to obtain a UGB for the ideal of a design are computationally intensive. Babson et al. (2003) propose a methodology to construct UGB in polynomial time. Their methodology constructs a list of term orders based upon the Hilbert zonotope. We focus on the generation of such a list. We use results on hyperplane arrangements to present a theorem which simplifies the computation of term orders for designs in two dimensions. Our theorem constructs directly the normal fan of the Hilbert zonotope.
URI: http://hdl.handle.net/10077/4144
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.37 (2005)

Files in This Item:
File Description SizeFormat 
Maruri-AguilarRendMat37.pdf251.08 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

499
checked on Feb 17, 2018

Download(s)

399
checked on Feb 17, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.