Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4163
Title: Propagation versus constancy of support in the degenerate parabolic equation $u_t=f(u)\Delta u$
Authors: Winkler, Michael
Keywords: Degenerate diffusionsupport evolution
Issue Date: 2004
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
36 (2004)
Abstract: A weak solution concept for the Dirichlet problem in bounded domains for the degenerate parabolic equation $u_t = f(u)\Delta u$ is presented. It is shown that if $\int_0^1 \frac{ds}{f(s)}<\infty$ then each nontrivial nonnegative weak solution eventually becomes positive, while if $\int_0^1 \frac{ds}{f(s)} = \infty$ then all weak solutions have their support constant in time.
URI: http://hdl.handle.net/10077/4163
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di matematica dell'Università di Trieste: an International Journal of Mathematics vol.36 (2004)

Files in This Item:
File Description SizeFormat 
WinklerRendMat36.pdf143.87 kBAdobe PDFView/Open
Show full item record


CORE Recommender

Page view(s)

834
checked on Oct 19, 2018

Download(s)

402
checked on Oct 19, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.