Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)
  6. On the derivatives of a family of analytic functions
 
  • Details
  • Metrics
Options

On the derivatives of a family of analytic functions

Al-Kharsani, H. A.
•
Al-Khal, R. A.
2003
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4171
  • Article

Abstract
For $\beta< 1$, n = 0, 1, 2, . . ., and $-\pi <\alpha\leq\pi$, we let $M_n(\alpha,\beta)$ denote the family of functions $f(z) = z +\ldots$ that are analytic in the unit disk and satisfy there the condition $Re\{(D^n f)'+\frac{1+e^{i\alpha}}{2(n+1)}z(D^n f)''\}>\beta$, where $D^n f(z)$ is the Hadamard product or convolution of f with $z/(1 − z){n+1}$. We prove the inclusion relations $M_{n+1}(\alpha,\beta) \subset M_n(\alpha,\beta$, and $M_n(\alpha,\beta) < M_n(\pi,\beta), \beta < 1$. Extreme points, as well as integral and convolution characterizations, are found. This leads to coefficient bounds and other extremal properties. The special cases $M_0(\alpha,0)\equiv \mathcal{L}_\alpha$, $M_n(\pi,\beta)\equiv M_n(\beta)$ have previously been studied [16], [1].
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Subjects
  • analytic functions

  • Hadamard product

  • partial sums

  • extreme points

  • convex hull

Publisher
Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source
H.A. Al-Kharsani, R.A. Al-Khal, "On the derivatives of a family of analytic functions", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 1-17.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

Al_KharsaniAl_KhalRendMat35.pdf

Format

Adobe PDF

Size

142.36 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback