Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4171
Title: On the derivatives of a family of analytic functions
Authors: Al-Kharsani, H. A.
Al-Khal, R. A.
Keywords: analytic functionsHadamard productpartial sumsextreme pointsconvex hull
Issue Date: 2003
Publisher: Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source: H.A. Al-Kharsani, R.A. Al-Khal, "On the derivatives of a family of analytic functions", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 1-17.
Series/Report no.: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Abstract: 
For $\beta< 1$, n = 0, 1, 2, . . ., and $-\pi <\alpha\leq\pi$, we let
$M_n(\alpha,\beta)$ denote the family of functions $f(z) = z +\ldots$
that are analytic in the unit disk and satisfy there the condition
$Re\{(D^n f)'+\frac{1+e^{i\alpha}}{2(n+1)}z(D^n f)''\}>\beta$,
where $D^n f(z)$ is the Hadamard product or convolution of f with
$z/(1 − z){n+1}$. We prove the inclusion relations
$M_{n+1}(\alpha,\beta) \subset M_n(\alpha,\beta$,
and $M_n(\alpha,\beta) < M_n(\pi,\beta), \beta < 1$.
Extreme points, as well as integral and convolution characterizations, are found.
This leads to coefficient bounds and other extremal properties.
The special cases $M_0(\alpha,0)\equiv \mathcal{L}_\alpha$,
$M_n(\pi,\beta)\equiv M_n(\beta)$ have previously
been studied [16], [1].
Type: Article
URI: http://hdl.handle.net/10077/4171
ISSN: 0049-4704
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)

Files in This Item:
File Description SizeFormat
Al_KharsaniAl_KhalRendMat35.pdf142.36 kBAdobe PDFThumbnail
View/Open
Show full item record


CORE Recommender

Page view(s) 50

737
checked on Jul 6, 2022

Download(s) 50

342
checked on Jul 6, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.