Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4173
Title: | From Hermite to Humbert polynomials | Authors: | Dattoli, G. Lorenzutta, S. Cesarano, C. |
Keywords: | Gegenbauer polynomials; Hermite polynomials; Humbert polynomials | Issue Date: | 2003 | Publisher: | Università degli Studi di Trieste. Dipartimento di Matematica e Informatica | Source: | G. Dattoli, S. Lorenzutta, C. Cesarano, "From Hermite to Humbert polynomials", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 37-48. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 35 (2003) |
Abstract: | We use the multivariable Hermite polynomials to derive integral representations of Chebyshev and Gegenbauer polynomials. It is shown that most of the properties of these classes of polynomials can be deduced in a fairly straightforward way from this representation, which proves a unifying framework for a large body of polynomial families, including forms of the Humbert and Bessel type, which are a natural consequence of the point of view developed in this paper. |
Type: | Article | URI: | http://hdl.handle.net/10077/4173 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DattoliLorenzuttaCesaranoRendMat35.pdf | 108.38 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
807
checked on Jul 6, 2022
Download(s) 50
570
checked on Jul 6, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.