Options
From Hermite to Humbert polynomials
Dattoli, G.
Lorenzutta, S.
Cesarano, C.
2003
Abstract
We use the multivariable Hermite polynomials to derive integral representations of Chebyshev and Gegenbauer polynomials. It is shown that most of the properties of these classes of
polynomials can be deduced in a fairly straightforward way from
this representation, which proves a unifying framework for a large
body of polynomial families, including forms of the Humbert and
Bessel type, which are a natural consequence of the point of view
developed in this paper.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Publisher
Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source
G. Dattoli, S. Lorenzutta, C. Cesarano, "From Hermite to Humbert polynomials", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 37-48.
Languages
en
File(s)