Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4175
DC FieldValueLanguage
dc.contributor.authorParton, Maurizio-
dc.date.accessioned2011-03-22T09:56:30Z-
dc.date.available2011-03-22T09:56:30Z-
dc.date.issued2003-
dc.identifier.citationMaurizio Parton, "Explicit parallelizations on products of spheres and Calabi-Eckmann structures", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 61-67.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4175-
dc.description.abstractA classical theorem of Kervaire states that products of spheres are parallelizable if and only if at least one of the factors has odd dimension. We give explicit parallelizations. We show that the Calabi-Eckmann Hermitian structures on products of two odd-dimensional spheres are invariant with respect to these parallelizations.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Matematica e Informaticait_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries35 (2003)it_IT
dc.subjectParallelizationit_IT
dc.subjectproduct of spheresit_IT
dc.subjectCalabi-Eckmannit_IT
dc.titleExplicit Parallelizations on Products of Spheres and Calabi-Eckmann Structuresit_IT
dc.typeArticle-
dc.subject.msc53Cxxit_IT
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)
Files in This Item:
File Description SizeFormat
PartonRendMat35.pdf90.48 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

824
checked on Aug 8, 2022

Download(s) 50

440
checked on Aug 8, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.