Please use this identifier to cite or link to this item:
http://hdl.handle.net/10077/4192
Title: | Isomorphism of Commutative Group Algebras over all Fields | Authors: | Danchev, Peter V. | Issue Date: | 2003 | Publisher: | Università degli Studi di Trieste. Dipartimento di Matematica e Informatica | Source: | Peter V. Danchev, "Isomorphism of Commutative Group Algebras over all Fields", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 147–164. | Series/Report no.: | Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics 35 (2003) |
Abstract: | It is argued that the commutative group algebra over each field determines up to an isomorphism its group basis for any of the following group classes: • Direct sums of cocyclic groups • Splitting countable modulo torsion groups whose torsion parts are direct sums of cyclics; • Splitting groups whose torsion parts are separable countable • Groups whose torsion parts are algebraically compact • Algebraically compact groups These give a partial positive answer to the R.Brauer’s classical problem. |
Type: | Article | URI: | http://hdl.handle.net/10077/4192 | ISSN: | 0049-4704 |
Appears in Collections: | Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DanchevRendMat35.pdf | 143.43 kB | Adobe PDF | ![]() View/Open |
CORE Recommender
Page view(s) 50
635
checked on Jul 6, 2022
Download(s) 50
414
checked on Jul 6, 2022
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.