Please use this identifier to cite or link to this item: http://hdl.handle.net/10077/4192
DC FieldValueLanguage
dc.contributor.authorDanchev, Peter V.-
dc.date.accessioned2011-03-30T08:05:33Z-
dc.date.available2011-03-30T08:05:33Z-
dc.date.issued2003-
dc.identifier.citationPeter V. Danchev, "Isomorphism of Commutative Group Algebras over all Fields", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 147–164.it_IT
dc.identifier.issn0049-4704-
dc.identifier.urihttp://hdl.handle.net/10077/4192-
dc.description.abstractIt is argued that the commutative group algebra over each field determines up to an isomorphism its group basis for any of the following group classes: • Direct sums of cocyclic groups • Splitting countable modulo torsion groups whose torsion parts are direct sums of cyclics; • Splitting groups whose torsion parts are separable countable • Groups whose torsion parts are algebraically compact • Algebraically compact groups These give a partial positive answer to the R.Brauer’s classical problem.it_IT
dc.language.isoenit_IT
dc.publisherUniversità degli Studi di Trieste. Dipartimento di Matematica e Informaticait_IT
dc.relation.ispartofseriesRendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematicsit_IT
dc.relation.ispartofseries35 (2003)it_IT
dc.titleIsomorphism of Commutative Group Algebras over all Fieldsit_IT
dc.typeArticle-
dc.subject.msc20C07it_IT
dc.subject.msc20K21it_IT
dc.subject.msc16S34it_IT
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)
Files in This Item:
File Description SizeFormat
DanchevRendMat35.pdf143.43 kBAdobe PDFThumbnail
View/Open
Show simple item record


CORE Recommender

Page view(s) 50

635
checked on Aug 8, 2022

Download(s) 50

414
checked on Aug 8, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.