Repository logo
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
Repository logo
Repository logo
  • Archive
  • Series/Journals
  • EUT
  • Events
  • Statistics
  • English
  • Italiano
  • Log In
    Have you forgotten your password?
  1. Home
  2. EUT Edizioni Università di Trieste
  3. Periodici
  4. Rendiconti dell’Istituto di Matematica dell’Università di Trieste: an International Journal of Mathematics
  5. Rendiconti dell'Istituto di Matematica dell'Università di Trieste: an International Journal of Mathematics vol.35 (2003)
  6. Concentration of Local Energy for Two-dimensional Wave Maps
 
  • Details
  • Metrics
Options

Concentration of Local Energy for Two-dimensional Wave Maps

Georgiev, Vladimir
•
Ivanov, Angel
2003
Loading...
Thumbnail Image
ISSN
0049-4704
http://hdl.handle.net/10077/4193
  • Article

Abstract
We construct some particular kind of solution to the two - dimensional equivariant wave map problem with inhomogeneous source term in space-time domain of type $\Omega_\alpha(t) = {x \in \mathbb R^2 : |x|^\alpha < t}$, where $\alpha\in (0, 1]$. More precisely, we take the initial data $(u_0, u_1)$ at time T in the space $H^{1+\epsilon} \times H^\epsilon$ with some $\epsilon > 0$. The source term is in $L^1((0, T); H^\epsilon(\Omega_\alpha(t)))$ and we show that the $H^{1+\epsilon}$ -norm of the solution blows-up, when $t \rightarrow 0_+$ and $\alpha\in (0, 1 − \epsilon)$.
Series
Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics
35 (2003)
Subjects
  • equivariant wave maps...

  • Hs-spaces

  • blow-up of solution

Publisher
Università degli Studi di Trieste. Dipartimento di Matematica e Informatica
Source
Vladimir Georgiev and Angel Ivanov, "Concentration of Local Energy for Two-dimensional Wave Maps", in: Rendiconti dell’Istituto di Matematica dell’Università di Trieste. An International Journal of Mathematics, 35 (2003), pp. 195–235.
Languages
en
File(s)
Loading...
Thumbnail Image
Download
Name

GeorgievIvanovRendMat35.pdf

Format

Adobe PDF

Size

259.04 KB

Indexed by

 Info

Open Access Policy

Share/Save

 Contacts

EUT Edizioni Università di Trieste

OpenstarTs

 Link

Wiki OpenAcces

Archivio Ricerca ArTS

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback